

Primer sequence (5'-3')

ACGGATAGAAACTGCCGGTCAGGACA

LAM300-R GTTATCGAAATCAGCCACAGGGC

300 bp

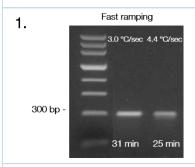
Fast PCR protocol:

Additional reduction of PCR run time – three approaches

PCR program for 2-step Fast PCR - 31min total

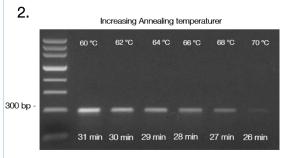
Cycler step	Temperature	Duration	Cycles
Initial heating	98 °C	40 sec.	1
Denaturation	92 °C	2 sec.	
Extension*	60 °C	2 sec.	30
Final extension	72 °C	20 sec.	1

^{*} the extension temperature depends on the primer set. For fast PCR choose highest possible


λDNA Taq DNA Polymerase STANDARD FAST 300 bp 90 min 31 min

Experimental setup – Amplification of λ DNA using Taq DNA Polymerase ID

LAM300-F


Ammonium buffer 1x dNTP mix 0,2 mM each MgCl₂ 1,5 mM Primers 0,2 μM λ DNA 1 ng Tog DNA	Reaction mix*		
buffer dNTP mix 0,2 mM each MgCl ₂ 1,5 mM Primers 0,2 μM λ DNA 1 ng	Ammonium	1x	
MgCl ₂ 1,5 mM Primers 0,2 μM λ DNA 1 ng	buffer		
Primers 0,2 μΜ λ DNA 1 ng	dNTP mix	0,2 mM each	
λ DNA 1 ng	MgCl ₂	1,5 mM	
9	Primers	0,2 μΜ	
Tog DNA	λDNA	1 ng	
. () 5 = 111	Taq DNA	0.5 – 1U	
polymerase * // O up to a total value of 25 up			

H₂O up to a total volume of 25 µl

1. Applying fast ramping technology

Applying the Fast PCR protocol on a fast ramping PCR instrument with a ramping time of 4.4 °C/sec, results in reduction of 6 minutes, compared when the PCR protocol was applied on a standard PCR instrument with a ramping time of 3.0 °C/sec

2. Optimization of annealing temperature

Reducing the temperature difference between the annealing steps and denaturation steps results in shortened ramping time. By increasing annealing temperature in incidents of 2 $^{\circ}\text{C}$ starting at 60 $^{\circ}\text{C}$, the PCR run time of the Fast PCR protocol was shortened by up to 5 minutes. PCR products with acceptable yield are obtained at up to 66 °C.

3. Reduce the number of PCR cycles

Fast PCR protocol gives fine amplification results using 30, 29, 28 and 27 cycles. Using 27 cycles instead of 30, reduces PCR run time by 3 minutes, ending up with a run time of 28 min.