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Introduction: Despite the clinical success of PD-1/PD-1-ligand immunotherapy in non-small cell lung cancer 
(NSCLC), the appearance of primary and acquired therapy resistance is a major challenge reflecting that the 
mechanisms regulating the expression of the PD-1-ligands PD-L1 and PD-L2 are not fully explored. Type I and II 
interferons (IFNs) induce PD-L1 and PD-L2 expression. Here, we examined if PD-L1 and PD-L2 expression also 
can be induced by type III IFN, IFN-λ, which is peculiarly important for airway epithelial surfaces. 
Methods: In silico mRNA expression analysis of PD-L1 (CD274), PD-L2 (PDCD1LG2), and IFN- λ signaling 
signature genes in NSCLC tumors and cell lines was performed using RNA sequencing expression data from 
TCGA, OncoSG, and DepMap portals. IFN-λ-mediated induction of PD-L1 and PD-L2 expression in NSCLC cell 
lines was examined by real-time quantitative polymerase chain reaction and flow cytometry. 
Results: IFNL genes encoding IFN- λ variants are expressed in the majority of NSCLC tumors and cell lines along 
with the IFNLR1 and IL10R2 genes encoding the IFN-λ receptor subunits. The expression of PD-L1 and PD-L2 
mRNA is higher in NSCLC tumors with IFNL mRNA expression compared to tumors without IFNL expression. In 
the NSCLC cell line HCC827, stimulation with IFN-λ induced both an increase in PD-L1 and PD-L2 mRNA 
expression and cell surface abundance of the corresponding proteins. In the NSCLC cell line A427, displaying a 
low basal expression of PD-L1 and PD-L2 mRNA and corresponding proteins, stimulation with IFN-λ resulted in 
an induction of the former. 
Conclusion: The type III IFN, IFN- λ, is capable of inducing PD-L1 and PD-L2 expression, at least in some NSCLC 
cells, and this regulation will need acknowledgment in the development of new diagnostic procedures, such as 
gene expression signature profiles, to improve PD-1/PD-1-ligand immunotherapy in NSCLC.   

1. Introduction 

Interferons (IFNs) possess antiviral and anti-cancer activity. The 
most recently discovered class of IFNs, type III IFN, consists of four 
homologous proteins, IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 (Kotenko 
et al., 2003; Prokunina-Olsson et al., 2013; Sheppard et al., 2003). All 
IFN-λ subtypes induce cellular responses through binding to their het-
erodimeric receptor consisting of subunits IL10R2 (IL10Rβ) and IFNλR1 
(IL28Rα). The IL10R2 receptor subunit also participates in IL-10, IL-22, 
and IL-26 signaling (Walter, 2020). Whereas IL10R2 is ubiquitously 
expressed, IFNλR1 expression is more restricted and is preferentially 
expressed on cells present at barrier surfaces with high epithelial content 

such as the intestine, skin, and lung, and the current dogma is that IFN-λ 
protects the epithelium against viral infections (Sommereyns et al., 
2008; Zanoni et al., 2017; Donnelly et al., 2004; Crotta et al., 2013). 
However, recent findings challenge this view since IFNλR1 is also 
expressed by a subset of immune cells (Zanoni et al., 2017). IFN- 
λ-signaling resembles that of type I IFN (IFN-α/β) (Zhou et al., 2007; 
Lasfar et al., 2019). Upon IFN-λ binding, the receptor-associated JAK1 
and TYK1 kinases are activated, and this results in the formation of the 
ISGF3 transcription factor complex composed of STAT1, STAT2, and 
interferon response factor 9 (IRF9) (Wack et al., 2015). ISGF3 trans-
locates to the nucleus where it binds interferon-sensitive response ele-
ments (ISRE) and regulates the expression of IFN-stimulated genes 
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(ISGs), including the genes encoding the transcription factors IRF1 and 
IRF7 (Zhou et al., 2007; Lu et al., 2000). Besides, IFN-λ has also been 
shown to activate mitogen-activated protein (MAP) kinase pathways 
(Zhou et al., 2007; Brand et al., 2005). In the tumor microenvironment, 
both dendritic and cancer cells can produce type I and type III IFN 
(mainly IFN-λ1, but also IFN-λ2 and IFN-λ3) through activation of the 
TLR3 and cGAS-STING pathways in response to DNA released from 
dying or disrupted tumor cells (Chen et al., 2018; Vitiello et al., 2021; 
Deb et al., 2020; Hubert et al., 2020). IFN-λ is proposed to possess direct 
anti-tumor effects such as induction of tumor apoptosis and cell cycle 
arrest in several cancer types (Lasfar et al., 2019; Tezuka et al., 2012; Li 
et al., 2012; Fujie et al., 2011). 

Antibody-based immunotherapy targeting the immune checkpoint 
PD-1/PD-1-ligand axis is a treatment option in cancer, including non- 
small cell lung cancer (NSCLC) (Sun et al., 2020). PD-L1 and PD-L2 
are ligands for PD-1 and the interaction is normally involved in main-
taining peripheral and central immune cell tolerance. When cancer cell 
membrane-located PD-1-ligands bind the PD-1 membrane receptor on 
anti-tumor T cells, the T cells can be inactivated, thus providing a way 
for cancer cells to escape tumor immunity (He et al., 2015). Anti-PD-1 
and anti-PD-L1 antibodies can block this interaction, relieving PD-1- 
mediated immune suppression and regaining anti-tumor immunity 
(Iwai et al., 2002; Hirano et al., 2005). Despite the clinical success of PD- 
1/PD-L1 immunotherapy, therapy resistance, either primary or ac-
quired, is a major challenge (Sun et al., 2020; Jenkins et al., 2018). In 
NSCLC, the response rate to PD-1/PD-L1 immunotherapy is only 
approximately 20% (Borghaei et al., 2015; Garon et al., 2015). During 
an anti-tumor immune response, cytokines and pro-inflammatory mol-
ecules are released into the tumor microenvironment where they can 
induce the expression of PD-1-ligands in cancer cells and other tumor 
microenvironment cells, leading to tumor immune escape, a phenome-
non called adaptive immune resistance (Garcia-Diaz et al., 2019). IFN of 
type I and type II (IFN-γ) induces the expression of PD-1-ligands in 
cancer cells through the JAK-STAT signaling pathway, as well as 
through C-FOS (Garcia-Diaz et al., 2019; Morimoto et al., 2018; Shiba-
hara et al., 2018; Lee et al., 2006). Garcia-Diaz et al. showed the exis-
tence of functional IRF1 binding sites in the PD-L1 (CD274) and PD-L2 
(PDCD1LG2) promoters for activation by type II IFN and type I and II 
IFNs, respectively (Garcia-Diaz et al., 2019). Furthermore, a STAT1/ 
STAT3 binding site in the PD-L2 promoter was shown to have larger 
importance than the IRF1 binding site during activation by type I and II 
IFNs (Garcia-Diaz et al., 2019). The PD-L1 promoter also contains two 
binding sites for IRF7 and upregulation of IRF7 expression independent 
of IFN-signaling increases PD-L1 mRNA and PD-L1 protein expression in 
NSCLC cell lines (Lai et al., 2018). 

To improve PD-1/PD-L1 cancer immunotherapy, it will be important 
to understand in depth the mechanisms that regulate PD-1-ligand 
expression. Because type III IFN resembles type I IFN in its down-
stream signaling pathway and is peculiarly important for airway 
epithelial surfaces, we here questioned whether type III IFN can upre-
gulate PD-1-ligand expression in NSCLC cells. 

2. Materials and methods 

2.1. In silico mRNA expression analyses 

2.1.1. cBioPortal analysis 
The cBioPortal (https://www.cbioportal.org/) was used to access 

mRNA expression data of NSCLC patient tumors from The Cancer 
Genome Atlas (TCGA) project (Gao et al., 2013; Cerami et al., 2012). The 
TCGA Firehose Legacy studies NSCLC Lung Adenocarcinoma (LUAD, n 
= 586) and NSCLC Lung Squamous Cell Carcinoma (LUSC, n = 511) 
were used for analysis. Samples with no available expression data were 
removed before analysis. mRNA expression data for NSCLC patient 
adenocarcinoma tumors from the Singapore Oncology Data Portal 
(OncoSG) (n = 169) were used as a validation dataset (Chen et al., 

2020). TCGA and OncoSG RNA sequencing (seq) data in the format V2 
RNA-Seq by Expectation Maximization (RSEM) were log2-transformed 
using a pseudo-count of 1 before analysis. 

2.1.2. DepMap portal analysis 
The DepMap Portal (https://depmap.org/portal/interactive/) was 

used to access mRNA expression data of NSCLC cell lines (n = 163). 
Using a pseudo-count of 1, log2 transformed RNA seq transcript per 
million (TPM) gene expression data were used for analysis. For IFN-λ 
receptor co-expression analyses, the filter NSCLC was used to extract 
mRNA expression data from the Expression 21Q4 Public dataset. NSCLC 
cell lines with no available expression data were removed before anal-
ysis. For IFN signaling signature genes including PD-L1 and PD-L2, the 
filter NSCLC adenocarcinoma was used to extract mRNA expression data 
from the Expression 22Q1 and 22Q2 Public dataset. NSCLC adenocar-
cinoma cell lines with no available expression data were removed before 
analysis and cell lines were sorted according to whether they had hot-
spot mutations in EGFR and KRAS. 

2.2. Cell culture 

Genetic characteristics, purchase, and growth of cell lines A549, 
H358, H1666, HCC827, H1650, PC9, H1993, H1568, H2228, H1975, 
H596, and A427 were as previously described (Larsen et al., 2023). One 
day before IFN stimulation, cells were seeded in triplicates in 6 well 
plates at a cell density resulting in 60–80% confluent cells at the time of 
harvest for RNA extraction or flow cytometry analysis. Cells were 
stimulated with 10 ng/mL IFN-γ (PeproTech, 300-02), 10 ng/mL IFN-λ1 
(PeproTech, 300-02L), or 10 ng/mL IFN-λ3 (Dellgren et al., 2009) for 5 
h, 24 h, 48 h or 72 h. Respective controls received an equal volume of 
PBS + 0.01% bovine serum albumin (Sigma-Aldrich, A2153), PBS, or 
PBS with 10% glycerol, as cells stimulated with IFN-γ, IFN-λ1, and IFN- 
λ3, respectively. 

2.3. RNA extraction, cDNA synthesis, and RT-qPCR 

RNA was extracted using Trizol (Sigma-Aldrich T90424). Thermo 
Scientific NanodropTM spectrophotometer was used to measure the 
purity and concentration of purified RNA. cDNA synthesis of 1 μg RNA 
was performed with iScript cDNA Synthesis Kit (Bio-Rad, 170-8890). 
RT-qPCR was carried out on a Roche LightCycler 480 platform with 
the following settings: heating 95 ◦C for 15 min, 40 cycles of PCR (95 ◦C 
for 30 sec, gene-specific annealing temperature for 30 sec, 72 ◦C for 30 
sec), and final elongation at 72 ◦C for 1 min. Each reaction contained 1 
μL cDNA (10 ng/μL), 0.125 μL forward primer (10 pmol/μL), 0.125 μL 
reverse primer (10 pmol/μL), 5 μL RealQ Plus 2× Master Mix Green 
(Ampliqon, A323402) and 3.750 μL Nuclease-free H2O. Genes with Ct- 
values ≥35 were considered not expressed. This is exemplified by MX1 
expression in IFN-unstimulated A427 control cells being below the limit 
of detection and accordingly imputed an RT-qPCR value corresponding 
to Ct = 35. Data analysis was done using the X0 method (Thomsen et al., 
2010) and TBP mRNA expression was used for normalization. TBP was 
stably expressed throughout experiments. Primer efficiencies were 
determined from a standard curve. The following primers and annealing 
temperatures were used; TBP forward 5′ AGGAGCCAAGAGTGAAGAA-
CAG 3′ and reverse 5′ CCCAACTTCTGTACAACTCTAGC 3′ (60 ◦C). PD- 
L1 forward 5′ ACTGTGAAAGTCAATGCCCCA 3′ and reverse 5′

GGTGACTGGATCCACAACCA 3′ (60 ◦C). PD-L2 forward 5′ AGCCC-
TAAGAAAACAACTCTGTCA 3′ and reverse 5′ ACAGGTCTTTTTGTTGTG 
TCTTTTG 3′ (60 ◦C). IRF1 forward 5′ CATGGCTGGGACATCAACAAG 3′

and reverse 5′ TGCTTTGTATCGGCCTGTGTG 3′ (60 ◦C). IRF7 forward 5′

CCACGCTATACCATCTACCT 3′ and reverse 5′ TATCCAGGGAAGACA-
CACC 3′ (60 ◦C). IFNLR1 forward 5′ CAGCGTGTACCTGACATGGCTC 3′

and reverse 5′ CTTGGTTCCCGCACACTCTTCC 3′ (60 ◦C). ISG56 forward 
5′ CCTCCTTGGGTTCGTCTACA 3′ and reverse 5′ GGCTGA-
TATCTGGGTGCCTA 3′ (58 ◦C). MX1 forward 5′
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ACCTACAGCTGGCTCCTGAA 3′ and reverse 5′ CGGCTAACGGA-
TAAGCAGAG 3′ (58 ◦C). OASL forward 5′ AGGGTACAGATGGGACATCG 
3′ and reverse 5′ AAGGGTTCACGATGAGGTTG 3′ (58 ◦C). 

2.4. Flow cytometry 

For flow cytometry, cells were detached using Accutase (Nordic 
Biosite, 423201), washed twice in stain buffer (PBS + 0.5% BSA +
0.09% sodium azide), and kept on ice. Cells were pre-incubated with 2.5 
μL (2 mg/mL) human immunoglobulin (Ig) (CSL Behring, 108450) at 
4 ◦C for 15 min. to block any unspecific antibody binding. Cells were 
stained in the total volume of 50 μL stain buffer solution containing 2.5 
μL Ig from the blocking, 0.25 μL PD-L1 antibody (Brilliant Violet 421™ 
anti-human CD274 (B7-H1, PD-L1), BioLegend, 329713), 0.125 μL PD- 
L2 antibody (PE anti-human CD273 (B7-DC, PD-L2), BioLegend, 
329605) and 0.5 μL LIVE/DEAD Fixable Near-IR (ThermoFisher Scien-
tific, L34975) at 4 ◦C for 30 min. Cells were then washed three times in 
stain buffer and fixated in PBS containing 0.9% formaldehyde. One-
Comp eBeads (ThermoFisher Scientific, 01–1111-41) stained with each 

antibody and ArC Amine Reactive Compensation Bead Kit (Thermo-
Fisher Scientific, A10346) stained with LIVE/DEAD Fixable Near-IR 
were used for compensation. Fluorescence minus one (FMO) for each 
antibody was used for setting gates for positive cells. Cells were analyzed 
within 24 h using NovoCyte Quanteon 4025 (Agilent, Santa Clara, CA). 
Before experiments, all antibodies were titrated to determine staining 
concentration. Flow cytometry data were analyzed using FlowJo version 
10 (BD Biosciences). The median fluorescence intensity (MFI) of stim-
ulated cells was normalized to respective controls before statistical 
analysis. 

2.5. Statistical analyses 

Graphs and statistical analyses were created using Graphpad Prism 
version 9. Data are presented as mean and error bars as standard devi-
ation except for box plots presented as median with percentiles. Sig-
nificance was analyzed using unpaired t-test with correction for multiple 
comparisons using the Holm-Šidák method, Mann-Whitney test, one- 
way ANOVA followed by Šidák multiple comparison test, and two-way 

IL10R2

IF
N

LR
1

IFNA1
IFNA2

IFNA4
IFNA5

IFNA6

IFNA7
IFNA8

IFNA10

IFNA13

IFNA14

IFNA16

IFNA17

IFNA21
IFNB1

IFNG
IFNL1

IFNL2
IFNL3

IF
N

IFNL

IFNL

PD-L1

IF
N

L1

PD-L2

IF
N

L1

r = 0.18, p = 5.6E-9r = 0.15, p = 2.3E-6

r = -0.10, p = 2.2E-3

IFNL

IFNL

Fig. 1. In silico mRNA expression analyses of NSCLC tumors. (a) Analysis of 1018 NSCLC tumors (LUAD and LUSC) from TCGA Firehose Legacy studies available at 
cBioPortal for mRNA expression of IFN genes. Percentages of tumors with expression log2(RSEM + 1) > 0 of given IFN genes. (b) Venn diagram for the percentage of 
TCGA NSCLC tumors (LUAD and LUSC) expressing mRNA for IFNL1, IFNL2, and IFNL3. (c) Analyses of IFNL gene expression in TCGA LUAD, TCGA LUSC, and 
OncoSG LUAD. Percentages of tumors with IFNL mRNA expression, log2(RSEM + 1) > 0, are shown. (d) mRNA co-expression of IFNLR1 and IL10R2 mRNA in TCGA 
NSCLC dataset (LUAD and LUSC). Spearman correlation coefficient and corresponding p-value are shown. (e) mRNA co-expression of IFNL1 and PD-L1 (left panel) 
and IFNL1 and PD-L2 (right panel). Spearman correlation coefficients and corresponding p-values are shown. Upper boxplots are illustrating the difference in PD-L1 
and PD-L2 mRNA expression between the population with IFNL mRNA expression log2(RSEM + 1) > 0, and the population without IFNL mRNA expression. Box 
represents the 25th percentile, median and 75th percentile. Whiskers represent minimum and maximum values. Mann-Whitney test is used to test for significance. 
**** p < 0.0001. (f) Spearman correlation analysis of mRNA expression in the validation dataset OncoSG LUAD (n = 169). Spearman correlation coefficients and 
corresponding p-values are shown. 
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ANOVA with interaction followed by Tukey’s multiple comparisons tests 
as specified. Data were considered significant when p-value/adjusted p- 
value < 0.05. 

3. Results 

3.1. IFNL and its receptor co-express with PD-L1 in NSCLC cell lines and 
tumors 

First, we examined if IFN-λ expression is present in NSCLC tumors. 
Merged mRNA expression data from TCGA LUAD and LUSC tumors (the 
TCGA NSCLC dataset) were used as a discovery dataset to examine if 
IFN-λ expression is present in individual tumors. Expression was 
assigned if log2(RSEM + 1) > 0. This showed that 62% of the tumors 
expressed at least one of the IFN-λ encoding genes IFNL1, IFNL2, and 
IFNL3 (Fig. 1a and 1b). IFNL1 is expressed in 56%, IFNL2 in 22% and 
IFNL3 in 19% of the NSCLC tumors (Fig. 1a). Moreover, in the TCGA 
NSCLC dataset expression of IFNL1, IFNL2, and IFNL3 mRNA correlated 
(Table 1). The IFNL expression was similar in the individual TCGA LUSC 
and LUAD datasets (Fig. 1c). Examination of a validation dataset rep-
resenting an independent cohort of lung adenocarcinoma tumor tissue 
samples, OncoSG (Chen et al., 2020), also revealed tumor expression of 
IFNL1, IFNL2, and IFNL3 mRNA (Fig. 1c). With the vast majority of 
TCGA NSCLC tumors (94%) expressing IFNG mRNA, only a minority of 
tumors (3%) display IFNL mRNA expression without also having IFNG 
mRNA expression. More common is the existence of tumors with IFNL 
mRNA expression without also having IFNB mRNA expression (33%), 
IFNA mRNA expression (30%), or both IFNB and IFNA mRNA expression 
(19%). This supports the existence of a population of NSCLC tumors in 
which ISG transcriptional regulation can be concomitantly mediated by 
IFN-γ and IFN- λ, rather than concomitant between IFN- γ and IFN-α/β. 
Examining the mRNA expression of IL10R2 and IFNLR1 in the TCGA 
NSCLC dataset, showed co-expression in the tumors (Fig. 1d). However, 
the expression was not correlated in agreement with IL10R2 being a 
receptor for cytokines beyond IFN- λ (Fig. 1d). Thus, NSCLC tumors 
seem to possess the potential to support IFN-λ -mediated signaling. 

The PD-L1 and PD-L2 genes can in cancer cells be activated by 
oncogenic driver mutations, various cytokines, and IFN-α/βand IFN-γ. In 
alignment with data showing that IFN- γ is an important activator of PD- 
1-ligand expression, we find that PD-L1 and PD-L2 mRNA expression is 
correlated with IFNG mRNA expression (Table 1) (Garcia-Diaz et al., 

2019; Larsen et al., 2019). Induction of PD-L1 and PD-L2 expression in 
response to IFN- λ stimulation could also contribute to NSCLC tumor 
immune escape. mRNA expression analyses of TCGA and NSCLC tumors 
revealed neither correlation between IFNL1 and PD-L1 nor between 
IFNL1 and PD-L2 mRNA (Fig. 1e and 1f). Similar, neither IFNL2 nor 
IFNL3 mRNA displayed expression correlation in TCGA NSCLC tumors 
with PD-L1 and PD-L2 mRNA (Table 1). However, the expression of PD- 
L1 and PD-L2 mRNA was significantly higher in the population of tumors 
in the TCGA NSCLC dataset with IFNL mRNA expression (Fig. 1e, upper 
panels). ISG56 (IFIT1), MX1, and OASL genes are well characterized to 
be IFN-λ response genes (Zhou et al., 2007; Doyle et al., 2006; Lauber 
et al., 2015), and the expression of these correlated with IFNL mRNA 
expression (Table 1). For IRF1 and IRF7 mRNA there were tendencies of 
correlation with IFNL mRNA expression (Table 1). Together this in-
dicates that IFN-λ–signaling, across the NSCLC tumors, is not the major 
driver of PD-L1 and PD-L2 mRNA expression, but that IFN-λ-signaling 
could contribute in parallel with oncogenic drivers, cytokines, and IFNs 
of type I and type II, to confer the PD-L1 and PD-L2 mRNA expression 
levels present in the individual tumors. 

The cellular heterogeneity and the associated complex regulation of 
PD-L1 and PD-L2 expression in NSCLC tumors could mask a contribution 
from IFN-λ signaling. To address this, we examined expression data for 
CCLE NSCLC cell lines. We observed co-expression of IL10R2 and 
IFNLR1 mRNA in most of the NSCLC cell lines (Fig. 2a). This supports 
that some NSCLC cell lines have the potential to support IFN-λ signaling. 
As also observed in NSCLC tumors, the expression of IL10R2 and IFNLR1 
mRNA was not correlated (Fig. 2a). mRNA expression (log2(TPM + 1) >
0) of at least one of the IFN-λ genes IFNL1, IFNL2, and IFNL3 was 
detected in the majority of the NSCLC lines (65%) but the expression 
levels were generally low (Fig. 2b and c). The expression of IFNL1, 
IFNL2, and IFNL3 mRNA correlated (Table 1). Thus, the cancer cells in 
NSCLC tumors could represent one source of IFN- λ. We next examined 
the co-expression of PD-L1 and PD-L2 mRNA with IFNL mRNA. No sig-
nificant expression correlations were observed (Fig. 2d and Table 1). 
Moreover, the expression of neither PD-L1 nor PD-L2 mRNA was 
significantly increased in the population of NSCLC cell lines possessing 
IFNL mRNA expression (Fig. 2d, upper panels). Notably, IFNL mRNA 
expression correlated with ISG56, MX1, and OASL mRNA expression, 
and there was a tendency of correlation with IRF1 and IRF7 mRNA 
expression (Table 1). This points out that across the NSCLC cell lines, the 
given level of intrinsic IFN-λ-signaling is not a major driver of PD-L1 and 

Table 1 
Spearman correlation analysis in NSCLC mRNA expression datasets.  

Spearman correlation coefficients (upper lines) with corresponding p-values (lower lines) for mRNA expression in NSCLC datasets. In green colour is shown correlation 
coefficients for the TCGA NSCLC dataset (the merged LUAD and LUSC datasets). In blue colour is shown correlation coefficients for the CCLE NSCLC dataset. Syn-
onymous gene names: IL10R2/IL10RB; PD-L1/CD274; PD-L2/PDCD1LG2; ISG56/IFIT1. 
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PD-L2 mRNA expression. But the data also indicate that NSCLC cell lines 
can have a gene-expression signature that could support signaling by 
IFN-λ following in vitro stimulation. 

3.2. IFN- λ induce PD-L1 and PD-L2 mRNA expression in HCC827 cells 

The NSCLC cell line HCC827 harbors an oncogenic mutation in an 
amplified epidermal growth factor receptor (EGFR) gene with resulting 

ligand-independent activation of EGFR. HCC827 cells express PD-L1 and 
PD-L2 and the expression of both PD-1-ligands is stimulated by IFN-γ 
(Garcia-Diaz et al., 2019; Shibahara et al., 2018; Gao et al., 2018). 
Moreover, regulation of PD-L1 by type I IFN in HCC827 cells was sug-
gested given that IFN αR1 depletion abrogated PD-L1 expression (Gong 
et al., 2020). We note that HCC827 cells express IL10R2 and IFNLR1 
mRNA (Fig. 2a). Stimulating HCC827 cells with the representative type 
III IFN, IFN-λ3, did not result in altered IFNLR1 mRNA expression 

Fig. 2. In silico mRNA expression analyses of NSCLC 
cell lines. (a–d) Analysis of NSCLC cell lines from 
DepMap Portal Expression 21Q4 and 22Q2 Public 
dataset. (a) mRNA co-expression of IFNLR1 and 
IL10R2. Spearman correlation coefficient and corre-
sponding p-value are shown. (b) mRNA expression of 
IFNL genes (horizontal line represents mean). Per-
centages of cell lines with IFNL mRNA expression log2 
(RSEM + 1) > 0 are shown. (c) Venn diagram for the 
percentage of NSCLC cell lines expressing mRNA for 
IFNL1, IFNL2, and IFNL3. (d) mRNA co-expression of 
IFNL1 with PD-L1 and PD-L2. Cell lines HCC827 and 
A427 are annotated. Spearman correlation coefficient 
and corresponding p-value are shown. Upper boxplots 
are illustrating the difference in PD-L1 and PD-L2 
expression between the population with intrinsic IFNL 
expression, log2(TPM + 1) > 0, and the population 
without intrinsic IFNL expression. Box represents the 
25th percentile, median and 75th percentile. Whiskers 
represent minimum and maximum values. Mann- 
Whitney test is used to test for significance.   

IFNLR1

ISG56 OASLMX1

IRF1IRF7 PD-L1

PD-L2

Fig. 3. IFN-λ3 induces PD-L1 and PD-L2 
mRNA expression in HCC827 cells. (a–d) 
Cells were stimulated with 10 ng/mL IFN-λ3. 
In panel b cells were stimulated with 10 ng/ 
mL IFN-γ. N = 3 for all time points and 
treatments except for IFN-λ3 at 72 h where 
N = 2. Stimulation is examined against 
respective untreated controls at each time 
point using multiple unpaired t-tests with 
correction for multiple comparisons using 
the Holm-Šidák method. * p < 0.05; ** p <
0.01; *** p < 0.001; **** p < 0.0001. mRNA 
expression is given relative to TBP.   
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supporting lack of autoregulation between IFN-λ and the cognate re-
ceptor (Fig. 3a). The IFN-λ signaling cascade is characterized by the 
induced expression of primarily IRF7 of the IRFs, which subsequently 
confers additional ISG induction (Zhou et al., 2007). In HCC827 cells, 
stimulation with IFN-λ induced the expression of IRF7 mRNA at all the 
time endpoints (Fig. 3b). The IFN-λ signaling cascade was shown to also 
induce IRF1 expression, but with IFN-γ signaling being a more pro-
nounced IRF1 inducer (Platanias, 2005; Der et al., 1998). In alignment, 
stimulation with IFN-λ in HCC827 cells resulted in less induction of IRF1 
mRNA relative to IRF7 mRNA expression, whereas stimulation with IFN- 
γ, at least at the single time point examined (5 h), the vice versa was 
observed (Fig. 3b). ISG56, MX1, and OASL are characterized to be IFN-λ 

inducible genes (Zhou et al., 2007), and their mRNA expression 
increased upon IFN-λ stimulation (Fig. 3c). Altogether, these results 
indicate that HCC827 cells are responsive toward IFN-λ–mediated 
signaling. 

We next examined the mRNA expression of PD-L1 mRNA after IFN-λ 
stimulation. At 5, 24, and 48 h of IFN-λ stimulation, PD-L1 mRNA 
expression was significantly upregulated (Fig. 3d). We also examined if 
IFN-λ3 induces PD-L2 mRNA expression. IFN-λ stimulation significantly 
upregulated PD-L2 mRNA expression at all the time endpoints (Fig. 3d). 
Noteworthy, we observed more pronounced IFN-λ-mediated induction 
of PD-L2 mRNA expression compared to PD-L1 mRNA expression (mean 
fold change induction at different time points relative to respective 

Fig. 4. IFN-λ and IFN-γ induce PD-L1 and PD- 
L2 cell surface protein expression in HCC827 
cells. Flow cytometry analysis of a PD-L1 and b 
PD-L2 cell surface protein expression in 
HCC827 cells after stimulation with 10 ng/mL 
IFN-λ1, IFN-λ3, or IFN-γ for 24, 48 h, and 72 h 
compared to respective controls. Upper panels: 
Representative histogram of cell surface protein 
expression. Unstained represents FMO of a PD- 
L1 and b PD-L2. Lower panels: Cell surface 
protein expression of cells stimulated with IFN-γ 
(left), IFN-λ3 (middle), or IFN-λ1 (right) 
normalized to respective controls (controls 
represented by dotted line). N = 3 for all time 
points and treatments. Two-way ANOVA with 
interaction followed by Tukey’s multiple com-
parisons tests. Adjusted p-value; * p < 0.05; ** 
p < 0.01; *** p < 0.001; **** p < 0.0001.   
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controls ranged from 1.48 to 2.11 for PD-L1 and from 2.15 to 6.31 for 
PD-L2). We notice that the more pronounced PD-L2 mRNA induction is 
in line with observations by Garcia-Diaz et al. showing a more profound 
induction of PD-L2 expression by IFN-β (Garcia-Diaz et al., 2019). 

3.3. IFN-λ induces PD-1-ligand cell surface expression in HCC827 cells 

To show if the IFN-λ-mediated increase in PD-L1 and PD-L2 mRNA 
expression in HCC827 cells translates to induced cell surface PD-L1 and 
PD-L2 protein expression, we performed flow cytometry analyses. We 
stimulated HCC827 cells with IFN-λ1 or IFN-λ3. In addition, we stimu-
lated with IFN-γ as a positive control for induced PD-L1 and PD-L2 cell 
surface expression (Garcia-Diaz et al., 2019). IFN-λ1, IFN-λ3, and IFN-γ 
stimulation upregulated cell surface PD-L1 protein expression (Fig. 4a). 
The PD-L1 protein expression increased over time resulting in the 
highest PD-L1 expression at 72 h for both IFN-λ1, IFN-λ3, and IFN-γ 
stimulation (Fig. 4a). PD-L2 cell surface expression also increased upon 
IFN-λ1, IFN-λ3 and IFN-γ stimulations (Fig. 4b). Like for PD-L1, IFN-λ1 
and IFN-λ3 stimulation resulted in highest PD-L2 expression at 72 h, 
whereas PD-L2 surface expression peaked at 48 h upon stimulation with 
IFN-γ (Fig. 4b). At all examined time points, IFN-λ1, IFN-λ3, and IFN-γ 
stimulations induced a more pronounced PD-L2 protein expression 
response relative to PD-L1 (Fig. 4a and b). 

3.4. IFN-λ induces PD-L1 mRNA expression in A427 cells 

We wanted to examine IFN-λ-mediated regulation of PD-L1 and PD- 
L2 in another NSCLC cell line. For this, we used the NSCLC cell line 
A427, which harbors an oncogenic mutation in the KRAS gene. A427 
cells express IL10R2 and IFNLR1 mRNA and have a low PD-L1 and PD-L2 

mRNA expression compared to HCC827 cells (Fig. 2a and d). As also 
observed in HCC827 cells, the expression of IFNLR1 mRNA was not 
induced by IFN-λ3 in A427 cells (Fig. 5a). IFN-λ3 induced IRF7 mRNA 
expression, and to a lesser extent IRF1 mRNA expression (Fig. 5b). 
Moreover, IFN-λ3 induced the mRNA expression of ISG56, MX1, and 
OASL (Fig. 5c). Together this verifying that the IFN-λ signaling pathway 
could be activated in A427 cells. 

IFN-λ3 stimulation mediated an increase in PD-L1 mRNA expression 
(Fig. 5d). The induction of PD-L1 mRNA expression in A427 cells was 
comparable to the induction in HCC827 cells. The PD-L2 mRNA 
expression levels in both control and IFN-λ3 stimulated A427 cells were 
below the detection levels in RT-qPCR (all Ct-values ≥ 35). PD-L2 mRNA 
expression below the limit of detection was also observed after IFN-γ 
stimulation (data not shown). 

We next examined the PD-L1 and PD-L2 cell surface expression for 
A427 cells. A relatively low basic amount of PD-L1 and PD-L2 expression 
was observed (Fig. 6a and 6b). This is in alignment with the PD-L1 and 
PD-L2 mRNA expression levels in A427 cells. IFN-λ1 and IFN-λ3 stimu-
lation had a minimal increasing effect on the PD-L1 cell surface 
expression, whereas the increase was more pronounced with IFN-γ 
stimulation, and this in a time point-depending manner (Fig. 6a). IFN-λ1 
and IFN-λ3 stimulation did not increased PD-L2 surface expression 
(Fig. 6b). Albeit formally statistical significant, the increase in PD-L2 cell 
surface expression by IFN-γ was negligible (Fig. 6b). Thus, despite the 
presence of a functional IFN-λ-signaling cascade in A427 cells is the IFN- 
λ–mediated stimulation of PD-L1 and PD-L2 cell surface expression 
impeded relative to HCC827 cells. 

IFNLR1

ISG56 OASLMX1 PD-L1

IRF1IRF7

Fig. 5. IFN-λ3 induces PD-L1 mRNA expression in A427 cells. (a–d) Cells stimulated with 10 ng/mL IFN-λ3. In panel b cells werestimulated with 10 ng/mL IFN-γ. N 
= 3 except for control at 24 h for ISG56 and MX1 where N = 2, and for IRF7 where N = 2 for all time endpoints and treatments. Stimulation is examined against 
respective untreated controls at each time point using multiple unpaired t-tests with correction for multiple comparisons using the Holm-Šidák method. * p < 0.05; ** 
p < 0.01; *** p < 0.001; **** p < 0.0001. MX1 expression in IFN-unstimulated cells was below the limit of detection and imputed an RT-qPCR value corresponding to 
Ct = 35. mRNA expression is given relative to TBP. In panel c was OASL protein induction analyzed by western blotting using H3 as a control for equal loading of 
sample material. 
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3.5. PD-L1 and PD-L2 mRNA induction by IFN- λin various NSCLC cell 
line genetic backgrounds 

Activating mutations in EGFR and KRAS were previously shown to 
confer transcriptional regulatory landscapes impacting PD-L1 and PD-L2 
mRNA expression (Shibahara et al., 2018; Ayers et al., 2017; Sumimoto 
et al., 2016), as well as to differently sustain IFN-λ-mediated growth 
inhibitory and apoptotic effects (Tezuka et al., 2012; Li et al., 2012; Fujie 
et al., 2011). On top of this, increasing the expression of IRF7 can in an 
IFN-signaling independent mechanism stimulate the expression of PD- 
L1 (Lai et al., 2018). With the lower basal expression of PD-L1 and PD- 
L2 in A427 cells relative to HCC827 cells, we questioned if this was 
reflecting a difference in the expression of IRF7, as well as other IFN- 
signaling factors, between NSCLC cells with EGFR and KRAS-muta-
tions. In extracted DepMap portal expression data from NSCLC 

adenocarcinoma cell lines with either EGFR or KRAS mutations, 
including HCC827 and A427 cells, no significant differences in the 
expression of IFN-signaling factors were observed (Fig. 7). Furthermore, 
no basal PD-L1 and PD-L2 mRNA expression differences were system-
atically observed by comparing cell lines with EGFR and KRAS muta-
tions (Fig. 7). But we notice the presence of a considerable variation in 
PD-L1 and PD-L2 mRNA expression among the cell lines (Fig. 7). Finally, 
we examined PD-L1 and PD-L2 mRNA induction by IFN-λ in a series of 
NSCLC cell lines (Table 2). In A549 cells, which like A427 cells harbor a 
KRAS mutation, both PD-L1 and PD-L2 mRNA expression was increased 
(Table 2). In PC9 cells, which like HCC827 cells harbor an EGFR mu-
tation, PD-L1 induction was modest and PD-L2 induction was 2-fold 
(Table 2). This further indicates that the EGFR and KRAS oncogenic 
driver backgrounds are not major determinants for defining PD-L1 and 
PD-L2 mRNA induction as a consequence of IFN- λ stimulation. Among 

Fig. 6. IFN-λ modestly induces PD-L1 cell surface 
protein expression in A427 cells. Flow cytometry 
analysis of a PD-L1 and b PD-L2 cell surface protein 
expression in A427 cells after stimulation with 10 
ng/mL IFN-λ1, IFN-λ3, or IFN-γ for 24 h, 48 h, and 
72 h compared to respective controls. Upper panels: 
Representative histogram of cell surface protein 
expression. Unstained represents FMO of a PD-L1 and 
b PD-L2. Lower panels: Cell surface protein expres-
sion of cells stimulated with IFN-γ (left), IFN-λ3 
(middle), or IFN-λ1 (right) normalized to respective 
controls (controls represented by dotted line). N = 3 
for all time points and treatments except for control 
for IFN-γ at 72 h where N = 2. Statistics: Two-way 
ANOVA with interaction followed by Tukey’s multi-
ple comparisons tests. Adjusted p-value; * p < 0.05; 
** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not 
significant.   
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all the NSCLC cell lines, expression of PD-L1 and PD-L2 mRNA was 
increased to various degrees, but in general modest, following stimula-
tion with IFN-λ (Table 2). A control gene for IFN-λ signaling, ISG56, 
displayed an increased mRNA expression in most cell lines and with the 
modest induction in H596 and H1650 cells assigned the high basal 
mRNA expression level in these particular cell lines (Table 2). For PD-L1 
and PD-L2 there was no clear association between the basal level of 
mRNA expression and the degree of induction mediated by IFN- λ 
(Table 2). We conclude that across NSCLC cell lines, a large degree of 
heterogeneity is present concerning the impact of IFN- λ stimulation to 
mediate induced PD-L1 and PD-L2 mRNA expression. 

4. Discussion 

The hereby described observation that type III IFN, IFN- λ, has the 
potential to induce PD-L1 and PD-L2 expression has implications for PD- 
1/PD-1-ligand axis immunotherapy in NSCLC patients. The importance 
of detailed knowledge concerning PD-1-ligand regulation is dual with 
both its impact on improved diagnostics to identify immunotherapy 
responders and for developing immunotherapy based on the suppression 
of PD-1-ligand expression. The golden standard to identify NSCLC pa-
tients most likely responding to immunotherapy is to quantify the PD-L1 

positive percentage of tumor cells by immunohistochemical analysis of a 
biopsy and subsequently offer immunotherapy to patients that display 
tumor PD-L1 expression positivity (Udall et al., 2018). A considerable 
fraction of the treated patients will not respond, and actual responders 
are present among the untreated patients (Borghaei et al., 2015; Garon 
et al., 2015; Malhotra et al., 2017; Fehrenbacher et al., 2016; Reck et al., 
2016). Thus, diagnostic procedures, which go beyond direct 
immunological-based PD-L1 expression estimates are needed. For this is 
the use of tumor-based gene-expression signatures for oncogenic 
signaling and immune signaling controlling PD-L1 expression status 
appealing (Mehnert et al., 2017; Hwang et al., 2020). IFN signaling 
signatures are particularly promising due to the known stimulation of 
PD-L1 expression by type I and type II IFN (Garcia-Diaz et al., 2019; 
Morimoto et al., 2018; Ayers et al., 2017). That type III IFN, at least in 
some NSCLC cell lines, possesses the capability to induce PD-L1 
expression highlights this signaling pathway also should be included 
in gene expression signatures used for immunotherapy diagnostics. We 
acknowledge that type I and type III IFN signaling pathways are largely 
overlapping, and, accordingly, many features of the IFN-λ signaling 
pathway are already included in existing gene expression signatures for 
IFN type I signaling. Nevertheless, the straightforward inclusion of 
IFNL1, IFNL2, and IFNL3 mRNA expression data, similar to IFNA, IFNB, 
and IFNG mRNA expression data, could have immediate potential to 
improve diagnostic gene expression signatures. Three classes of NSCLC 
tumors were identified based on TCGA mRNA expression data: tumors 
without type I IFN gene expression but with type III IFN gene expression, 
tumors with type I IFN gene expression but without type III IFN gene 
expression, and tumors with both type I and type III IFN gene expression. 
On top of this, most NSCLC tumors possessed type II IFN gene expres-
sion. With PD-L1 and PD-L2 being ISGs, which in addition are activated 
by constitutive oncolytic pathways, the observation of also IFN- 
λ-mediated induction contributes to the mechanistic understanding of 
the time-spatial expression of PD-1-ligands in NSCLC tumors. Both inter- 
and intra-tumor heterogeneity of PD-1-ligand expression is widely 
documented (Haragan et al., 2019) and that type III IFN could be a 
contributor to this, beyond type I and type II IFNs, needs acknowledg-
ment. We find it of importance that in NSCLC, IFN-λ anti-tumor effects 
were shown to be driver mutation-specific as IFN-λ mediates growth 
inhibitory and apoptotic effects in EGFR-mutated but not in KRAS- 
mutated NSCLC cells despite functional IFN-λ signaling pathways in 
both cell types (Tezuka et al., 2012; Li et al., 2012; Fujie et al., 2011). In 
this line, we also find that IFN-λ signaling is functional in both KRAS- 
mutated A427 and EGFR-mutated HCC827 cells since we observed IFN-λ 

JAK1 JAK2 TYK2 STAT1 STAT2 STAT3 SOCS1 SOCS2 SOCS3 IRF1 IRF7 IRF9 PD-L1 PD-L2

EGFR KRAS 

Fig. 7. IFN signature gene expression in NSCLC cell lines. mRNA expression analysis of IFN signaling signature genes, PD-L1, and PD-L2 in HCC827, A427, and 
additional NSCLC cell lines with hotspot mutations in EGFR (N = 9) or KRAS (N = 26) using the DepMap Portal Expression 22Q1 and 22Q2 public datasets. One-way 
ANOVA followed by Šidák multiple comparison testing did not reveal significant differences. 

Table 2 
Mrna expression in ifn- λ stimulated NSCLC cell lines.   

PD-L1 mRNA PD-L2 mRNA ISG56 mRNA 

Cell line Exp FC + IFN- λ Exp FC + IFN- λ Exp FC + IFN- λ 

HCC827 4.3 4.6 1.3 7.0 1.4 18.6 
H358 3.8 1.3 0.3 1.8 2.8 13.0 
H596 2.8 0.9 1.6 1.2 6.7 3.2 
H1568 2.1 1.1 0.1 1.0 0.7 13.0 
H1650 2.2 1.4 0.8 1.4 6.4 1.2 
H1666 1.4 1.2 1.6 1.1 1.9 32.4 
H1975 3.3 4.8 1.5 8.1 4.3 5.3 
H1993 nd 1.3 nd 1.0 nd 3.6 
H2228 3.4 1.5 2.3 1.7 2.6 18.2 
A427 0.3 4.4 0.0 nd 0.7 62.1 
A549 1.8 1.7 0.5 4.3 0.8 103.2 
PC9 2.1 1.2 1.1 2.1 0.5 134.0 

PD-L1, PD-L2, and ISG56 (IFIT1) mRNA expression normalized to mRNA 
expression of TBP and fold change (FC) in expression after 48 h stimulation with 
IFN- λ3. Exp, RNA sequencing determined expression levels without IFN- λ 
stimulation extracted from the DepMap portal in Log2(transcripts per million 
(TPM) + 1). nd, expression data not available. 

T.V. Larsen et al.                                                                                                                                                                                                                               



Immunobiology 228 (2023) 152389

10

mediated induction of ISG56, OASL, MX1, IRF1, and IRF7. This further 
agrees with our results derived from mRNA expression data for HCC827, 
A427, and other NSCLC adenocarcinoma cell lines with either EGFR or 
KRAS mutations showing that the expression of IFN-λ signaling factors 
did not differ between the two genetic backgrounds. The basal mRNA 
and cell surface protein expression for PD-L1 and PD-L2 was lower in 
A427 cells compared to HCC827 cells. Whereas PD-L1 and PD-L2 mRNA 
expression increased upon IFN-λ stimulation in HCC827 cells, only an 
increase in PD-L1 mRNA expression was detected in A427 cells. Notably, 
the fold-change in PD-L1 mRNA expression following IFN-λ stimulation 
was similar in HCC827 and A427 cells. PD-L1 and PD-L2 cell surface 
abundance increased upon IFN-λ stimulation in HCC827 cells, but only a 
modest induction of PD-L1 was observed in A427 cells. Thus, the dif-
ference in induction of PD-1-ligand cell surface expression between 
HCC827 and A427 cells cannot be accounted specifically as a result of 
differences in promoter interacting trans-factors and IFN-signalling 
factors in the KRAS-mutated and EGFR-mutated cellular backgrounds. 
To this end, PD-L1 is also regulated on the post-transcriptional and post- 
translational levels. This is exemplified by the regulation of PD-L1 
mRNA stability by miRNAs; the regulation of PD-L1 protein trans-
location at the cancer cell membrane by CMTM4 and CMTM6; and the 
regulation of PD-L1 localization and stability from various post- 
translational modifications (Hu et al., 2021; Burr et al., 2017; Mezza-
dra et al., 2017; Skafi et al., 2020). We also note that an examination of 
OASL protein induction by IFN-γ and IFN- λ stimulation in HCC827 cells 
and A427 cells also revealed that induction at protein level was 
unproportioned to induction at mRNA level (data not shown). Further 
studies are required to determine the exact background for the vari-
ability in IFN- λ -mediated induction of PD-1-ligands in different NSCLC 
cell lines. 

PD-L1-directed antibodies with resulting blocking effect for the 
interaction between PD-L1 and T-cell located PD-1 are used in immu-
notherapy to activate tumor T-cells (Sun et al., 2020; He et al., 2015; 
Iwai et al., 2002; Hirano et al., 2005; Jenkins et al., 2018). In an 
appealing hypothetical scenario, blocking both oncolytic and immuno-
logical pathways with an impact on PD-L1 mRNA expression could 
improve immunotherapy efficiency on top of the effect achieved from 
PD-L1 antibody-mediated blocking. The hereby-described findings show 
that attempts to block type I and type II IFN signaling-mediated PD-L1 
expression at the mRNA level should in addition also consider the 
impact of type III IFN signaling. 

5. Conclusion 

This study describes that IFN-λ has the potential to induce PD-L1 and 
PD-L2 expression at least for some NSCLC cells. Given that IFNL mRNA 
and IFN-λ receptors can be co-expressed with PD-L1 and PD-L2 in NSCLC 
cell lines and tumors, the foundation for further study of IFN-λ-mediated 
regulation of PD-1-ligands in vivo and the consequence for achieving 
improved PD-1/PD-1-ligand immunotherapy is set. 
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